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Abstract-A spatial description of the theory of rate-independent finite deformation elastoplasticity,
in which the stress tensor is defined through the strain energy function, is discussed. The main
assumption of isotropic elastic response and invariance requirements under superposed rigid body
motion restrict the acceptable forms of the strain energy function to those given in terms ofprincipal
values of the strain measure of elastic distortion. The formulation is developed on a manifold, and
the corresponding material description is obtained simply by pull-back of the derived spatial form,
by appealing to the notion of covariance. The method of principal axes is systematically exploited
to derive the explicit expression for the stress tensor computation for an arbitrary form of the strain
energy function, and the explicit form of the evolution equation for an arbitrary form of the yield
function. A model problem of volume-preserving plastic flow is discussed in the closure.

NOTATION

Objects defined on the reference configuration !M :
G covariant metric tensor in the reference (undeformed) configuration
E covariant Green-Lagrange finite strain tensor
C covariant right Cauchy-Green deformation tensor
S contravariant second Piola-Kirchhoff stress tensor
CP covariant right Cauchy-Green plastic deformation tensor
ni principal directions in the reference configuration

Objects defined on the current (deformed) configuration <p(!M) :
g covariant metric tensor in the current configuration
or contravariant Kirchhoff stress tensor
b' contravariant left Cauchy-Green elastic deformation tensor
Vi principal directions in the current configuration

Two point tensors:
F deformation gradient (mixed tensor)
F'P multiplicative decomposition of F

Scalars:
A; principal elastic stretches
'i principal stresses
~ internal variable which controls hardening
q thermodynamically conjugate variable to ~

l/J strain energy function
¢ yield function

1. INTRODUCTION

A sound theoretical foundation of the micro-mechanics of elastoplastic crystals has been
provided by Hill and Havner (1982) and Asaro (1983), among others, The same level of
success has not yet been attained with the phenomenological models of finite deformation
elastoplasticity, and not a single model has been met with a universal acceptance and
applicability to a most general situation, Many issues still appear to be unsettled, for
example: invariance requirements under the superposed rigid body motion [e.g. see Casey
and Naghdi (1980) and Dashner (1986)], the role of the plastic spin [e.g. see Mandel (1973)
and Dafalias (1985)], equivalence ofdifferent decompositions of the strain rate [e.g. see Lee
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(1980) and Nemat-Nasser (1982)], equivalence ofthe Eulerian and Lagrangian descriptions
[e.g. see Casey and Naghdi (1988)] etc.

In this work we discuss a form of the general theory of rate-independent finite ela
stoplasticity in which most of the conflicting issues, alluded to in the above, can be either
settled or circumvented altogether. The main restriction, under which this can be worked
out, implies an isotropic elastic response. For most of the metals and alloys [e.g. see Drucker
(1988)] the isotropy of the elastic response of the lattice structure can be considered as a
quite realistic assumption. Notice, however, that the assumption of this kind does not
preclude an induced anisotropy of the instantaneous tangent modulus in the presence of
plastic flow.

If one is to assume that the strain energy depends only on the elastic distortion, i.e.
change in local geometry between the current and the unstressed configuration, the isotropy
restriction imposes a strain energy form given in terms of invariants of the elastic strain
measure. A particularly elegant form of the finite plasticity formulation of this kind can be
given in the space of principal axes with the strain energy considered as a function of the
principal elastic stretches. It is interesting to note that the principal axis methodology was
also favored in a fundamental work of Hill (1978). While several recent works on numerical
implementation of finite deformation elastoplasticity [e.g. see Weber and Anand (1990),
Eterovic and Bathe (1990), Perie and Owen (1992) and Simo (1992)] also discuss the
formulations in terms of principal stretches, a typical development is restricted to the
classical three-dimensional Euclidean space.

In this work, however, we take those considerations to a more general setting of
differential manifolds [e.g. see Lang (1985) and Marsden and Hughes (1983)]. For a number
ofimportant applications, such as the finite deformation analysis ofelastoplastic membrane
shells [e.g. see Ibrahimbegovie (1993)], this is indeed the only appropriate framework. In
addition, a general formulation set on a manifold can clarify with particular ease (simply
by means of pull-back and push-forward) different possibilities for equivalent descriptions
of finite deformation plasticity. In this work, we focus on two choices, Euleriant or spatial
and Langrangian or material descriptions, which are also most commonly selected for
description of finite deformation elasticity [e.g. see Truesdell and Noll (1965), pp. 37-39].
In passing we comment on how this development relates to the commonly selected descrip
tion of finite deformation plasticity set in intermediate configuration.

Working within the framework of manifolds, one can furthermore obtain a finite
plasticity equivalent [e.g. see Simo (1988) and Moran et al. (1990)] of the notion of the
covariant constitutive theory, which was first presented for finite elasticity in Marsden and
Hughes (1983). The preference therein [see Marsden and Hughes (1983), Simo (1988) and
Moran et al. (1990)] was given to the invariant forms of the strain energy in terms of
invariants of the chosen strain measure, and a potential development based on principal
stretches is judged to be too complicated [see Marsden and Hughes (1983), p. 220]. We
hope to show in this paper that the method of principal axes and the strain energy forms
set in terms of principal elastic stretches, provide indeed a very suitable framework for the
development of a covariant theory of finite deformation elastoplasticity. Moreover, as
discussed in Ibrahimbegovie (1993), the developments of this kind provide a very suitable
basis for the numerical implementation, as already recognized within a simpler Euclidean
framework (e.g. Weber and Anand (1990), Eterovic and Bathe (1991), Perie and Owen
(1992) and Simo (1992)].

2. SPATIAL DESCRIPTION: BASIC FORMULATION

We assume that the multiplicative decomposition of the deformation gradient F gives
rise to a stress-free intermediate configurationt [e.g. see Lee (1969), Mandel (1973) and
Lubliner (1980)], i.e.

t Memory effect of plastic process requires that the entire particle motion be traced by the material
integration, and spatial objects become functions of reference coordinates [e.g. see Argyris et al. (1980)], so that
the spatial description of this kind is not a strict Eulerian technique.

t Multiplicative decomposition of the deformation gradient is defined only point-wise, so that the inter
mediate "configuration" does not necessarily represent a collection of compatible neighborhoods.
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(1)

where Fe is the Frechet derivative ofelastic deformation from the intermediate to the current
configuration, while FP is the Frechet derivative of plastic deformation from the reference
to the intermediate configuration.

We will first formulate the theory in the spatial description. The elastic strain measure
which reflects elastic distortion of the lattice structure, can be defined in terms of the left
Cauchy-Green elastic deformation tensor be, by using the decomposition in eqn (I) as

be = Fe(;-IFeT, (2)

where (; is the metric tensor in the intermediate configuration. As elaborated upon in what
follows, we assume that the value of stress tensor is defined through the strain energy
function

ljJ = ljJ(be, g, 0, (3)

where g is the metric tensor in the current configuration, and ~ is an internal variable which
controls hardening. For simplicity, we assume that ~ is a scalar, which implies the isotropic
hardening.t Note that with a slight abuse of notation, in eqn (3) and what follows, we
denote the function and its value with the same symbol.

The invariance requirements under rigid body motion superposed on the spatial con
figuration, along with the isotropy requirements in the reference configuration, lead to the
strain energy form in terms of the principal values of be, or alternatively, in terms of elastic
principal stretches 2~, i.e.

ljJ = ljJ(2~, O.

The elastic principal stretches are the solutions to the eigenvalue problem

(4)

(5)

The eigenvalue problem in eqn (5) above is set in terms of contravariant tensors, so that
the principal vectors Vi are covariant vectors, or one-forms [see Marsden and Hughes
(1983), p. 49]. Principal stretches 2~, on the other hand, are independent of a particular
choice of coordinates for the eigenvalue problem in eqn (5) [e.g. see Green and Zerna
(1968), p. 24].

An arbitrary coordinate representation of eqn (5) leads to a general linear eigenvalue
problem for the matrix pencil of two symmetric matrices (be, g-l). Recall [e.g. see Parlett
(1980), p. 307] that the positive definiteness of g is the guarantee for all the 2~ to be real.
Also recall [e.g. see Parlett (1980)] the orthogonality property of the eigenvectors Vi as

(6)

where bij is the Kronecker symbol, and . denotes the scalar product. The orthogonality
property of eigenvectors in eqn (6) plays an important role in the developments which
follow. For example, by using the orthogonality property in eqn (6), we can obtain the
spectral decomposition of be as

gbe = L: (2D 2v; ® g-l Vi = be = L: (2D 2g- 1
Vi ® g-l Vi'

i

where ® denotes the tensor product.

(7)

t Note that the choice of isotropic hardening refutes the questions of whether the intermediate configuration
is physically attainable.
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It is important to note that the isotropy implies that the energy-conjugate Kirchhoff
stress tensor 't" shares the same eigenvectors Vi' i.e. we have

(8)

where 'j are the principal values of Kirchhoff stress.
Another important ingredient of the plasticity theory discussed herein is the choice of

the yield function in terms of Kirchhoff stress. The invariance requirements under rigid
body motion superposed on the spatial configuration limit the acceptable forms of the yield
function to those given in terms of invariants of't", or in terms of its principal values '" i.e.

(9)

In eqn (9), q denotes the variable which is thermo-dynamically conjugate to the hardening
variable ~. Both q and 't" are specified through the corresponding stress-strain relations, as
elaborated upon shortly.

Having defined eqns (1)-(9) as the basic ingredients of the theory, we show that the
principle of maximum plastie dissipation [e.g. see Lubliner (1984) or Simo (1988)) along
with the standard thermodynamic considerations (Coleman and Gurtin, 1967) are the only
things we need in order to provide the remaining ingredients of the theory: stress-strain
constitutive relations for 't" and q, and evolution equations for be and ~, together with the
loading-unloading conditions.

Consider the spatial form of the dissipation inequality for the isothermal case

(10)

In eqn (10) above, d is the spatial rate-of-deformation tensor [e.g. see Marsden and Hughes
(1983), p. 98), which can be computed by means of the Lie derivative [e.g. see Lang (1985)
p. 109) of the spatial metric g as

d = ~Lv[g)

= .!.F-T{~[FTgF)} F- 1

2 at

= Hg+ITg+gI}, (11 )

where I = FF- I is the spatial velocity gradient.
The material time derivative of the strain energy in eqn (10) can be computed by

applying the chain rule as

(12)

In eqn (12) above, Lv [be) is the Lie derivative of the elastic left Cauchy-Green tensor, which
can be computed as

(13)

In order to work out the expression in eqn (12), the key result needed is given in the
following.
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Proposition 1

Proof: By using the invariant form of ljJ, we can compute

aljJ _ aljJ aA~

abe - ~ aAe abe',
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(14)

(15)

where aljJ/aA~ can be computed directly from eqn (4). Partial derivatives of the principal
stretches Af with respect to be can be computed from eqn (5) in an intrinsic form [e.g. see
Truesdell and Noll (1965), p. 25] as

(16)

Scalar-multiplication of eqn (16) above by the vector Vj, along with the eigenvector orthog
onality property in eqn (6) and the eigenvalue identity in (5), leads to

from where it follows that

aAe 1
-' =-v·®v.
abe 2Ae I I

I

Similarly, using the invariant form of the strain energy, we can write

aljJ _ L aljJ aA~

ag - j aAe og'
I

where oAf/ag can be computed from eqn (5) as

(
aA

e
)dg bevj-2Af a~· dg vj+ [gbe

- (AD 2 1] dVj = O.

(17)

(18)

(19)

(20)

Upon scalar-multiplication with the vector g-I Vj we can rewrite eqn (20), using the
orthogonality property in eqn (6) and eigenvalue statement in (5), as

(21)

from where it follows that

(22)

Finally, comparing eqns (15) and (18) on one side, against (19) and (22) on the other,
we recover the result in eqn (14). •
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Having obtained the results in eqns (11)-(14) we can rewrite the dissipation inequality
(10) as

(23)

Assuming that the elastic process is non-dissipative [e.g. see Lubliner (1980)], from eqn
(23) above we get the stress-strain relationship in terms of

(24)

as the equivalent of the Doyle-Ericksen formula [e.g. see Doyle and Ericksen (1956)] for
the case of finite deformation elastoplasticity.

Note that, upon substituting the results in eqns (19) and (22) into (24) above and using
the eigenvalue identity in eqn (5), we can explicitly compute the stress tensor according to

" ,e at/! -1 10. -1= L, /I.- - g v ~ g v·
; I aA.~ I "

(25)

which, along with the result in eqn (8), results in T; = A.~ at/!/aA.~.

If we denote as q the variable which is thermodynamically conjugate to the hardening
variable ~, i.e.

(26)

we can then obtain a reduced form of the dissipation inequality as

(27)

where [i)P is the plastic dissipation.
As shown in Lubliner (1984) and Simo (1988), the principle of maximum plastic

dissipation can be used in order to come up with the evolution equations and loading
unloading conditions. The basic idea is to look among all the admissible states (1'*, q*)
which satisfy the yield condition 4J(t*, g, q*) ~ 0, and find the state which renders the
plastic dissipation in eqn (27) maximum. This can be interpreted as a constrained min
imization problem, and formulated with the aid of the Lagrange multiplier procedure as

.!t'P (1'*, q*, y) := - [i)P(1'*, q*) + y4J(1'*, g, q*), (28)

where y ~ 0 is the Lagrange multiplier. The Kuhn-Tucker optimality conditions [e.g. see
Luenberger (1984), p. 314, Strang (1986), p. 724] of the Lagrangian in eqn (28) above lead
to the evolution equations for be and ~
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L [be] - 2' - 1 81> be
v - yg 8t '

. 81>
~=y

8q

and loading-unloading conditions

y~ 0; 1>(t,g,q) ~ 0;";1> = O.
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(29)

(30)

(31)

In closing this section, we remark that one can also compute an explicit form of eqn
(29) by making use of the following proposition.

Proposition 2
81> 81>-a =L-a V;Q9 Vi'

t i Li

(32)

Proof: By using the chain rule on the invariant form of the yield condition in eqn (9),
we can state

(33)

In addition, from the eigenvalue identity in eqn (8) it follows that

(34)

which, upon scalar-multiplication with the vector Vi and use ofthe eigenvector orthogonality
and eigenvalue identity, leads to

Substituting eqn (35) into (33) leads to (32).

(35)

•
3. MATERIAL DESCRIPTION: COVARIANT FORM OF THE THEORY

Having completed the developments of the spatial description of the theory in the
previous section, in this section we proceed to obtain an equivalent material description by
appealing to the notion of covariance [see Marsden and Hughes (1983), p. 199]. Namely,
we impose that a covariant constitutive theory should remain invariant not only under a
rigid body motion superposed on the current configuration (which entails no change of
metric), but also under a superposed diffeomorphism at, as long as the new metric is
computed properly by means of push-forward. Assuming that the superposed diffeo
morphism is equal to the inverse of the actual motion, i.e. at = cp-l, the push-forward by at
will correspond to the pull-back by cp [e.g. see Lang (1985), p. 106]. In particular, we would
have

and

at*[g-lj = cp*[g-l]

= F-1g-1F-T

=C- 1 (36)
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oc. [be] = lp. [be]

= F-lbeF-T

= FP-1G-1FP-T

= Cp - 1• (37)

Note that under these transformations the solutions for the eigenvalues A~ remain preserved,
since

o= [be - (Ar)2g- I]vj

= [F-lbeF-T-(Ar)2F-lg-IF-T]FTVj

= [CP- 1 -(A7)2C- 1]Oj. (38)

The transformation in eqn (38) above gives rise to the material form of the eigenvectors

(39)

with the orthogonality property OJ' C- 1
OJ = oij, which reveals the role of the right Cauchy

Green strain tensor C as the induced metric in the reference configuration.
The strain energy form in eqn (4) also remains preserved, for it depends only on A~.

Taking into account that A7 are also the solutions to the eigenvalue problem in eqn (38),
we can write an alternative expression for the strain energy as

t/f = t/f(cP, C, ~). (40)

Similarly, the pull-back of the Kirchhoff stress tensor -r gives rise to the second Piola
Kirchhoff stress tensor 8 as

=8,

which shares the same eigenvectors OJ as in eqn (39), since

0= [-r-"tjg-l]Vj

= [F-1-rT-T-"tjT-lg-IF-T]FTVj

(41)

(42)

Also note from eqn (42) that 8 has the same eigenvalues "t j as in eqn (8). This implies that
the invariant form of the yield criterion in eqn (9) remains preserved. Alternatively, we can
also write the yield criterion in terms of material objects as

¢(8, C, q) = O. (43)

The pull-back of the expression for computing the Kirchoff stress in eqn (25), with the
help of eqns (39) and (42), leads to
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S = 2F- 1 at/! F-T
og

= 2F- 1g-I F-T[~ 'tjD; (8) D;]F- 1g-l F-T

= 2~>;C-ID; (8) C-1Dj
j
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(44)

Finally, note that the evolution equation for ~ remains the same as in eqn (30). The
remaining evolution equation in (29), however, is transformed by using the results in eqns
(1) and (13) and the definition in (2) to get

1X*[Ly[be]] = q>*[Ly[be]]

= F-1Ly[belF-T

o= - [F-lbeF-Tlot

= ~[FP-IG-IFP-Tlat
(45)

where we denoted CP = FpTGFP the right Cauchy-Green plastic deformation tensor. In
addition, using the results in eqns (32), (39) and (42) to get

[
-1 O4Jbe] *[ -I o4Jbe]IX* g - = q> g -

o't o't

(46)

we arrive at the material form of eqn (29) given as

(47)

with

as the material form of eqn (32).

Remark I
If the spatial diffeomorphism superposed on the current configuration is assumed to

be equal to the inverse of the motion from the intermediate to the current configuration,
we will obtain the form ofthe finite deformation theory set in the intermediate configuration.
For example, we would have
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(48)

which would again preserve the invariant form of the presented theory. In the vast majority
of recent developments on numerical implementation of the finite deformation elasto
plasticity [e.g. see Moran et al. (1990), Weber and Anand (1990), Eterovic and Bathe
(1990), Peric and Owen (1992), Cutino and Oritz (1992)] the description associated with
the intermediate configuration was indeed a preferred choice. However, under present
restriction of the isotropic elastic response, one can see that the choice of configuration is
immaterial. •

Remark 2
The state variables of the finite elastoplasticity formulation are either {C, CP, ~} in

Lagrangian or {be, g, ~} in Eulerian description. Other variables, such as or, S or q, are
dependent on the state variables. The central problem of computational plasticity [e.g. see
Hughes (1983)] is to trace the time histories of the state variables through an incremental
sequence. The crucial simplification of such a problem is provided by the operator split
method [e.g. see Simo and Ortiz (1985), Simo (1988)], where the state variable computation
is divided into the computation of either C in Lagrangian or g in Eulerian description,
which sets the new current configuration, and the computation of the remaining state
variables (either {CP, n or {be, ~}), which corresponds to the intermediate configuration
update. In a three-dimensional case or a two-dimensional planar problem, the spatial
description provides the possibilities to simplify numerical implementation by using the
standard Euclidean metric [e.g. see Simo (1992)]. However, for a more general two-dimen
sional subset of the three-dimensional case, such as space-curved membrane shells, material
description is more suitable for numerical implementation [see Ibrahimbegovic (1993)].•

Remark 3
Even if we select a special set of orthogonal material coordinates, in which the coor

dinate representation of the metric tensor is the identity matrix, i.e. even G = I, it is still
not convenient to choose the Green-Lagrange strain tensors {E, EP} for the state variables
instead of Cauchy-Green strains {CP, C}, as suggested in the works of Green and Naghdi
(1965) or Naghdi (1990). The inconvenience is brought about by a more involved form of
the evolution equation, and resulting difficulties which would complicate the description of
the problem in terms of the principal values of {E, EP}. •

4. MODEL PROBLEM: ISOCHORIC PLASTIC FLOW

In this section we discuss a particular choice for the set of constitutive equations which
fits within the general framework discussed in the preceding sections. In particular, two
ingredients of the theory, the yield function </J and the strain energy t/J, which are earlier left
in a general form are to be specified now.

For the majority of metals [e.g. see Drucker (1988)], the well-known yield criterion of
von Mises is used most often. This yield criterion can be stated in terms of invariants of the
deviatoric part of the Kirchhoff stress as

(49)

where f y is a uniaxial yield stress, and devg [e] denotes the deviatoric part of the tensor,
i.e.
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(50)

By substituting eqn (50) into (49), we can get an alternative form of the yield criterion
as

(51)

Note that in eqn (51) one can also write t'. g == (gt') . 1. Furthermore, from eqns (8) and
(42) it follows that the corresponding principal axis representations of gt' and CS are the
same, which directly leads to the equivalent material form of the yield criterion in eqn (51)
as

(52)

In the principal axis representations of either spatial or material form of the von Mises
yield criterion, we recover the well-known form [e.g. see Lubliner (1990), p. 129] given as

(53)

One consequence of the yield criterion in eqn (53), or any pressure-insensitive yield
criterion, is the exact preservation of plastic volume, or plastic incompressibility condition.
If we denote by J := det F, J" = det F' and JP = det FP, which form eqn (1) results with
J = J"JP, then the plastic incompressibility condition can be stated as

JP = 1 => J == J". (54)

In order to confirm the result in eqn (54) above, we consider the material time derivative
of J" = AIAiA~ given as

. OJe oj"
Je = -' L [be] + -' L [g]

abe v og v ,

where with the aid of eqn (18) we have

oj" oj" OA~--L--abe - j OAe abe
I

and with the result in eqn (22) we get

oJe OJe OA~--I--
og - j OA~ og

1
= Je "'__g-l V. ® bev.

72(AD2 I I

= ±JeIg-lv; ® g-I Vj
;

(55)

(56)

(57)
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By substituting results in eqns (56) and (57) into (55), and making use of (11), (29) and
(32), we get

je = r [~2(~n2 Vi ® Vi} [~( -2A)(An2:~ g-lv, ® g-lv,J+~rg-l . 2d

= -ryI,°</> + rg-1'd
i 07: i

= Jeg-l 'd, (58)

where we have used the fact that the pressure-insensitive form of the yield criterion in (53)
results with L, o</>/07: j = O. If we compare the result in eqn (58) with the standard result
j = Jg- 1

, d, we directly recover the plastic incompressibility condition in (54).
Next we address the issues of a proper form of the strain energy function for isotropic

elastoplasticity. First, by following Lubliner (1972), we will assume an additive decompo
sition of the strain energy function in eqn (4) as

(59)

The particular forms for EG) in eqn (59) above, which control description of the hardening
behavior, are often selected by curve-fitting of available test results.

On the other hand, the admissible forms of ~(A~) should satisfy certain conditions
imposed by finite elasticity. Namely, since the yield criterion in eqn (50) places no restrictions
on volumetric elastic strain, they can be quite large. That these extreme strains should be
accompanied by an infinite stress is a physically reasonable requirement which is easy to
grasp. With the invariant form of the strain energy in eqns (4) or (59), the physical
requirement of this kind can be easily represented in terms of mathematical conditions on
the form of ~, i.e.

~(An --+ <Xl as {A~ A2A3} --+ 0+

~(An --+ 00 as {A~A2A3} --+ 00. (60)

These conditions are intimately related to the notion of poly-convexity [e.g. see Marsden
and Hughes (1983), p. 20, Ciarlet (1988), p. 158]. A general form of the strain energy which
satisfies these requirements is given for so-called Ogden's materialt [e.g. see Ogden (1984),
p. 219, or Ciarlet (1988), p. 181] as

~(An = I,aj(A~ai+A2a'+A'n+ I,bj«AjA2)Pj+(A2A~)PJ+(AVDPJ)+r(A~AVU+e, (61)
~i P,

where r(.) is a convex function of its argument, for example,

r(x) = cx2
- dIn (x),

and constitutive coefficients are restricted to

(62)

(63)

Besides the restrictions given in eqn (63), the constitutive coefficients should be selected
in such a way that the standard form of the isotropic elasticity (St Venant-Kirchhoff
material) is recovered for very small elastic strains, i.e. for A~ f--+ 1. The strain energy function

t This is an analogy with finite elasticity, where Ogden's material is obtained when the total principal
stretches A, are used rather than the elastic stretches A~.



Finite elastoplasticity in principal axes 3039

which satisfies all the conditions stated above, and yet has a fairly simple form, is given [see
Ciarlet (1988), p. 185] as

ifi(A;) = a(..1.~2 + A~2 + A32)+ b((A~ A~)2 + (A~Aj)2 + (A3A~ )2) + c(..1.~ ..1.~;'j)2 + dIn (A~ A~Aj)+ e,

(64)

with

a = P+tr'(1); b = -tp-tr'(l)

c = ~(rt(l)+r"(1»;d = t(r"(1)-r'(l»; e = -(3a+3b+c), (65)

and specific choice for r'(1)e(-A/2-p, -J.l) and r"(1)e(A/2+J.l, A+p), where A and J.l
are the Lame parameters.

Note that the strain energy function in eqn (64) can also be written directly in terms
of state variables (g, be) in spatial, or (CP, C) in material description, upon noting that

and

(68)

where cof (A) = (det A)A-T.

Remark 4
Another useful form of the strain energy, which can meet the requirement on the small

elastic strain limit, is obtained from the strain energy of St Venant-Kirchhoff material by
simply replacing the Euler-Lagrange strains by logarithmic strains to get

This form of the strain energy does not satisfy the poly-convexity conditions only for the
extreme elastic strains, and it is still a very useful approximation in the moderate strain
regime. It is a very popular choice in numerical implementation [e.g. see Weber and Anand
[1990), Eterovic and Bathe (1991), Perie and Owen (1992), Simo (1992)], for it results with
significant simplifications. Moreover, in the presence of plane stress condition, this form of
the strain energy permits an explicit two-dimensional reduction of the general theory
discussed herein, which has a very important application in the analysis offinite deformation
of elastoplastic membrane shells [e.g. see Ibrahimbegovic (1993)].
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